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AbslmcL By incorparaling lateral tunnelling hiween adjacent quantum wires. as well as 
faking into account h e  dependence of the areal electron density and modulation strength 
on the varying gate voltage, we have alculaled the magnetoplasmon excitation energies 
of a lateral multiwire superlattice. We liave also examined the mle played by modulation 
strength (i.e. barrier height) and applid magnetic field on die mllective modes Our 
model successiully repmduces seven1 interesing features recently O k N e d  with the use 
of far infrared spectroscopy. Also, a novel commensurability relation between cyclotron 
and skipping arhits is predicted. 

1. Introduction 

As a result of the advances made in microlithography, solid-state devices have been 
fabricated from laterally confined two-dimensional electron gas (2D EG) systems, i.e. 
quantum wires [I]. Due to the comparable length scales of lateral confinement and 
the de Broglie wavelength, lateral quantization gives rise to a set of discrete one- 
dimensional (ID) subhands, associated with the free electron motion along the wires 
[Z]. It is well known that, in general, experimental results obtained from far-infrared 
(FIR) spectroscopy can be correctly explained in terms of the non-local nature of the 
collective modes [3]. When a perpendicular magnetic field 8 is applied, Landau 
quantization and lateral quantization are coupled to one another to form discrete ID 
Landau subbands 141. Consequently, both the subband separation and the electron 
effective mass are renormalized as a result of the skipping motion of the particle 
along the sides of the wires. 

Recently, Hansen et uf [I] reported a crossover transition from 2~ for a weakJy 
modulated 2D EG to ID behaviour corresponding to a lateral multiwire superlattice. 
This is achieved by applying a periodic depletion gate voltage Vs in one direction 
between the 21) EG and the grating gate. In this experiment both the modulation 
strength and areal electron density R ,  are changed by varying "p. For small negative 
values of Vg, Hansen a ai [I] observed a decrease in the excitation energy due to 
a decrease in in the 2D regime [SI. On the other hand, for large negative Vs 
(Vg < -0.5 eV), an anomalous increase of the electron energy was observed. Later, 
we show that this is due to the rapid increase in the lateral quantization in the ID 
regime. Furthermore, if \; is futed near -0.5 eV on the ID side we find a depinning 
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of the Fermi energy in the gap, as well as a depopulation of the ID Landau subbands 
(U) with increasing magnetic field B. When B is sufficiently large, we find that the 
Fermi energy is pinned at the bottom of the ID Ls and the frequency of the collective 
mode is given by w - we corresponding to ZD behaviour. Similar experimental results 
have been obtained by Heitmann el ai 161 which were displayed as a sudden change 
in the slope of (ho)? against E?. The theory of Wlf d a1 [5] has been unable to 
explain the anomalous increase in the excitation energy in the ID regime. We believe 
that this failure comes partly from the model they used in which they assumed a 
cosine potential [7] to simulate strong lateral tunnelling in the U) regime and may 
also be due to keeping R ,  Iixed in their calculation while wrying Vg. The features 
observed in the regime can be straightforwardly understood with our model by 
appropriately decreasing fi,. From our point of view, we begin with a lateral multiwire 
superlattice in the ID regime (no lateral tunnelling) and make the crossover to the 
U) regime by increasing the lateral tunnelling between adjacent quantum wires. In 
this way, we successfully reproduce the correct results ohserved in the ID regime [I]. 

The rest of this paper is arranged as follows. In section ‘2, we derive the dispersion 
relation for a periodic array of quantum wires. In section 3 we present numerical 
results for the collective magnetoplasmon modes as functions of magnetic field and 
barrier height. 
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2. Model for a modulated 2D EG nnd formalism 

For a sin& quantum wire, in the presence of a perpendicular magnetic field B along 
the : axis, the Hamiltonian can easily be shown to he 

where U&) is an effective confining potential for the ZD E (along the 2 direction) 
and a lateral paraholic confining potential is assumed in the z direction. Also, the 
Landau gauge A, = ZB has been used. G* = u ~ + R ~ , w ,  = eB/tIl’  is the cyclotron 
frequency, 12 = ( h / e B ) ( w c / G )  and the wavevector I;, along the y direction arc 
related to the guiding centre by I,, = - k Y @ .  in‘ is the effective mass for free 
electron motion whereas ?n’(B) 2 ???.*(G/il0)’ is the rcnormalized effective mass 
that takes account of the skipping motion on the walls of the wire. Generalizing this 
to a lateral multiwire superlattice system and assuming a tight-binding model [2], the 
eigenenergies and eigenfunctions can be expressed as 

where R , a ( k z , k v )  = [l + 2n,,,~~cco~(lz,n)]-~/? is a normalization factor and n = 
0,1,2,. . .. n is the separation between adjacent quantum wires. We also have 

N 

(4) 
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and 

is the bandwidth due to lateral tunnelling, where V, is the barrier height which is 
determined by the gate voltage (see later). In equations (4) and (5) we only include 
the nearest-neighbour wavefunction overlap. A better treatment should include the 
wavefunction overlap for all neighbours. However, this presents us with a mathemat- 
ical problem. Here we Iimit ourselves to the simplest approximation which is d i d  
only when the wire separation is much larger than the Landau diameter. 

is a variational-type of wavefunction, representing the quantum confinement in the z 
direction and L ,  is the thickness of the ZD layer. &,,(x) is the wavefunction for a 
harmonic oscillator and is given by 

In our notation, 1; is a renormalized Landau radius defined by 1;? = lg(Q,,/Z) where 
I, is the lateral extension of the lowest eigenstate at 5 = 0. 

With the use of standard many-body theory 18, 91, the dispersion relation for 
magnetoplasmons can be obtained in the random-phase approximation (RPA). The 
collective modes correspond to the solutions of 

Det[hjj, - U(qz  + j’G,9v)f(q2 +jC:,q, +j ’G,q, ,w;( j  - j ’ ) ) ]  = 0 (8) 

where C = 2 n / a  is a reciprocal lattice vector along the a! direction. The Fourier 
transform of the Coulomb potential is 

with the screening factor, due to the finite thickness of the 2D layer, determined by 
PI 
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where the form factor A,,,, is defined by 
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x exp [-i (k, + $) ma]. (12) 

Thc special function LX'-n(z) is an associated Laguerre polynomial and the irre- 
ducihle polarizability depends on the umklapp process and is given by 

n n r L t  ( q,,  q y ,  k= k, ,U; ( j  - Y)) = exi) [i k ,  C;L; (j - j')~ { 0[kY + k$'V k, + qy t 4,1 

x o[ I ;&" , ' ) (~ ,  + q , )  - q,, - kyyl - e[k(,"?(k,) - /li,,ij) 

+ ( 1  - &,,,,#)(U - -U). x { ( t l z q , k , / , n " ( B ) ) + [ ( h ' q ~ / 2 ~ n ' ( B ) ) + A E , , , , ( k , , ~ , ) - r . J ] } - '  

(13) 

In this notation, a similar term with opposite sign in frequency must he added to the 
first and e( I )  is the unit step function. Also 

Making use of the property that the wavefunction & k w ( z )  is localized, it is reason- 
able to approximate the bandwidth defined in equation (5) by 

A,,,kv 4 l, (lz&',,k,(X)Vo&n,~.,(" - a )  = 4anvo 
m 

= 4\/o/oL;( a 2 / 2 1 ; 2 ) e - a a / 4 ' ; Q  (15) 

whenever k $ P i  < 1. Equation (15) implies that rhc right-binding model corresponds 
to n > Z;. There is also a commensurahility relation hetween the cyclotron and 
skipping motions for the strongly modulated system [7] that corresponds to the zeros 
of the Laguerre polynomial LR( t )  for 11 > 1: 
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Clearly this relation depends on the subband index n but not on the guiding centre 
I,,. Here, '72, = -1; is the renormalized cyclotron radius. k$)(R,) is the 
Fermi wavenumber Cor the nth level. We have 

if 

and zero otherwise. For a chosen value of R,, the Fermi energy E, must be deter- 
mined self-consistently. We incorporate the effect of a varying gate voltage on RLs and 
Vo through the following model. For this, we observe that the ID channel width W 
has been calculated as [4] 

where the n lo  is the linear electron density and the areal density is given by [ I ]  

where 

n, is the threshold areal electron density that separates ID and ZD behaviour and 
no is the areal electron density when the gate voltage is zero. We define the barrier 
height (or modulation strength) by 

which is explicitly dependent on R,. Making use of these results, we have self- 
consistently calculated the Fermi energy by solving 

1 
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The soundness of our model is ensured by demanding that lz0l 4 n / 2  which means 
that for every value of I;, we must have 
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This restriction may give rise to a cut-off of the k, integral in equation (22). Keeping 
R,, we find that in the quantum strong field limit (U, > Q,) there is complete Landau 
quantization for which the kinetic energy is quenched and the energy eigenvalues 
become k,independent with 

A 
2 

E,(I;,) = (n t i) tuc t +(I  - cos (kSn) ) .  (24) 

Both the depopulation of the energy levels and the pinning of the Fermi energy 
will evolve in this regime. On the other hand, when hw, g ha,, the scaled Fermi 
energy EF/ tG  is independent of magnetic field. When hw, > An, there is a 
depinning of the Fermi energy. For a futed magnetic field, R, will he reduced when Vg 
changes from zero to negative values and the barrier height increases correspondingly. 
For An, g Au,, we find that E , / K J  is independent of An, in this 2D regime. 
However, due to an increase in lateral tunnelling when L; is reduced, the tunnelling 
ID Ls still depopulate. Furthermore, when the separation (t between adjacent quantum 
wires is increased (U B Z;, which is equivalent to an increase in magnetic field or 
modulation strength) interwire interaction and lateral tunnelling are suppressed and 
the system behaves Like a single quantum wire. 

s p a r e  01 Mngneiie Field B2 Fz> 

Figure 1. Calculated magnetoplasman excil81ion energy as a function of magnctic field, 
In these cilculations we look 111' = O.07me, c r  = 13.0 (< *  = 47ieotr), nc = 
1.8 x 10" cm-', n o  = 0.0 x 10" cm-', L, = 50 k 9, = q y  - 0, hila = 4.0 meV 
a = 150 nm. 
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Figure 2 Calculated magnetoplasmon excitation energy as a funclion of Vo. The values 
for m * , t , ,  t isr  n o ,  L: and a are the Same as those used for figure 1. Here 5 = 2.19 T 
and qz = qu = 0. The inset shows VO and Ep as functions of the confinement energy 
hO0. The threshold value of LOAh is indicated by a vertical arrowhead. The ID and w 
regimes mrrespond to the right- and left-hand sides of llie a m .  rerpeciively. 

3. Numerical results 

There are three types of collective excitations for the quantum wire array. There 
are: (1) intersubband excitations (tk = n' where the nfh ID LS is occupied); (2) 
intersubband excitations (n f: n' where the nth 1D 1s is occupied but the n'th ID 
1s is unoccupied); and (3) edge-state excitations (n # n' where both n and n' ID 
1s are occupied). Due to lateral tunnelling, the edgc-states with (large momentum 
transfer) q,  = f(k$ + k:F)) and the intrasubband excitations with q, = 32k;F) can 
give large contributions to the excitation energy, compared with those modes excited 
in the absence of any lateral tunnelling. 

In figure 1 we have plotted the square of the excitation energy as a function of 
the square of magneric field. Within the range B' = 1.0 T' - 2.0 T2, we find a 
sudden change of slope associated with the depinning of the Fermi energy in the 
energy gap. In this range of magnetic fields, EF has a peak. On further increasing 
B, depopulation of the ID 1.5 will follow which is accompanied by some peaks in 
the EF cuwe. Similar 'kinks' are expected to be repeated. This feature will be 
enhanced when fewer ID us are occupied, i.e. in the high magnetic field regime. 
When tuc >> MI,,, we expect a linear dependence. It might be possible to confirm 
this experimentally [6]. 
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Figure 2 shows a plot of the plasmon excitation energy tw as a function of V,. For 
small values of V, we find an increase in energy as V, decreases due to an increase 
in R,. When V, 2 63.G meV, we enter into the ID regime. In this region, we have 
found an anomalous decrease in the energy of the collective mode with V,. From 
the inset in figure 2 we could deduce the threshold value as = n, which corresponds 
to the local minimum in the excitation energy. We also observe the effects due to 
depinning of the Fermi energy and depopulation of the ID Ls, as is evident in figure 1. 
Each depinning or depopulation is accompanied by a peak in the Fermi energy awe.  
It might be possible to confirm this from the experiments carried out in [I]. Direct 
comparison between our results for the barrier height dependence of the excitation 
energy and the experimental data in 111 is not a straightfonvard matter. Of course, the 
barrier height is not the Same as the gate voltage. In order to present a quantitative 
comparison between theory and experiment, we need to know the functional relation 
between the gate voltage and the areal electron density. However, this is a non-trivial 
problem and may only be determined experimentally. Moreover, we expect that our 
equation (19) will only be suitable in the ID regime as well as in a very restricted 
region of the 2D regime lying close to the threshold. We believe that the method 
used in [S] to scale the gate voltage with the potential barrier height depends on the 
assumption that there is a linear relation between them. It is not clear that this would 
be valid for the entire range of mlues of gate voltage. From a physical point of view, 
the barrier height should increase with the gate voltage. Therefore, the general trend 
displayed in figure 2 would persist when plotted as a function of gate voltage. We 
emphasize that the aim of our paper is to explain qualitatively some of the interesting 
features found in the FIR experiments. 

In conclusion, our theory has successfully explained some interesting features 
recently observed in FIR experiments. Combining our results with those ohtained with 
a wine-modulation potential in the 2D regime, we are now able to get a complete 
understanding of magnctoplasmons for the ID, ZD and crossover regions. 
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